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Abstract 

The relationship between collapsibility and confounding has been subject to an extensive and ongoing discussion in 
the methodological literature. We discuss two subtly different definitions of collapsibility, and show that by consider-
ing causal effect measures based on counterfactual variables (rather than measures of association based on observed 
variables) it is possible to separate out the component of non-collapsibility which is due to the mathematical proper-
ties of the effect measure, from the components that are due to structural bias such as confounding. We provide new 
weights such that the causal risk ratio is collapsible over arbitrary baseline covariates. In the absence of confounding, 
these weights may be used for standardization of the risk ratio.
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Introduction
A measure of association (such as the risk difference 
or the risk ratio) is said to be collapsible if the marginal 
measure of association is equal to a weighted average 
of the stratum-specific measures of association [1]. The 
relationship between collapsibility and confounding has 
been subject to an extensive and ongoing discussion in 
the literature [2]. In this paper, we argue that the con-
cept of collapsibility can be made clearer if we frame the 
discussion in terms of causal effect measures based on 
counterfactual variables.

In all the examples, we are interested in the effect of a 
binary exposure A (e.g. a drug), on a binary outcome Y 
(e.g. a side effect). We use superscript to denote counter-
factual variables [3]. For example, Y a=1 is an indicator for 
whether an individual would have got the outcome if, pos-
sibly contrary to fact, she had been exposed to the drug. 
We will make a distinction between measures of asso-
ciation, which compare the distribution of the outcome 
in the exposed with the distribution of outcome in the 
unexposed; and causal measures of effect, which compare 
the counterfactual distribution of the outcome  under 
exposure (that is, the distribution of the outcome if eve-
ryone is exposed) with the counterfactual distribution of 

the outcome under the absence of exposure (that 
is,  the distribution of the outcome  if everyone is unex-
posed). For example, the associational risk difference is 
Pr(Y = 1|A = 1)− Pr(Y = 1|A = 0) whereas the causal 
risk difference (RD) is Pr(Y a=1 = 1)− Pr(Y a=0 = 1) . 
These effect measures may be defined within levels of 
covariates V.

This paper is organized as follows. In second section, 
we discuss two definitions of collapsibility, and show how 
established results about collapsibility depend on which 
definition is considered. In third section, we provide 
an application of these definitions to three measures of 
causal effects (risk difference, risk ratio, and odds ratio) 
and discuss the weights that make the risk difference and 
the risk ratio collapsible over an arbitrary set of baseline 
covariates. These weights can be used to standardize the 
effect measure to a population with any distribution of 
V, and we explicitly introduce such weights for the risk 
ratio. In fourth section, we show that while the weights 
that are required for collapsibility of the risk ratio involve 
counterfactual (and therefore unobservable) compo-
nents, these weights are identified from observed data in 
the absence of confounding. In fifth section, we discuss 
the implications of these results.

Definitions of collapsibility
We will adopt Pearl’s definition of collapsibility for meas-
ures of association [4]:
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Definition 1 (Collapsibility of a Measure of Associa-
tion) Let g[f(A,  Y)] be any functional that measures the 
association between A and Y  in the joint distribution 
f (A,Y ) . We say that g is collapsible on a variable V  with 
weights wv if 

∑
v {g[f (A,Y |V=v)]×wv}∑

v wv
= g[f (A,Y )]

Newman [5] showed conditions under which the asso-
ciational risk difference, risk ratio, and odds ratio are col-
lapsible  (or averageable) according to this definition. He 
also provided corresponding weights. Briefly, we note 
that: the associational risk difference is collapsible with 
weights Pr(V = v|A = 1) if V  is not associated with the 
outcome in the unexposed, or if V  is not associated with 
the exposure; the associational risk ratio is collapsible 
with weights Pr(V = v|A = 1)× Pr(Y = 1|A = 0,V = v) 
under similar conditions; and the associa-
tional odds ratio is collapsible with weights 
Pr(V = v|A = 1)× Pr(Y = 0|A = 1,V = v)

×
Pr(Y=1|A=0,V=v)

1−Pr(Y=1|A=0,V=v)
 under certain very limiting condi-

tions, for example if Pr(Y = 1|A = 0,V = v) is equal for 
all values of v. A full discussion of the graphical and prob-
abilistic conditions that lead to collapsibility under this 
definition is provided by Greenland and Pearl [6].

From these results, it follows that general statements 
about the collapsibility properties of effect measures 
(e.g. “the risk difference is collapsible”) must either be 
qualified by a specification of the conditions that are 
being assumed, or alternatively taken to refer to some 
other definition of collapsibility. We therefore suggest 
a suitable alternative definition: a measure of  causal 
effect is collapsible if the marginal effect measure is 
equal to a weighted average of the stratum-specific 
causal effect measures. This is a formalization of the 
definition used in Fine Point 4.3 in Hernan and Robins 
textbook Causal Inference, and can mathematically be 
stated as follows:

Definition 2 (Collapsibility of a Measure of Causal 
Effect) Let h[f (Y a=0,Y a=1)] be any function  of the 
parameters Y a=0 and Y a=1 in the joint distribution 
f (Y a=0,Y a=1) . We say that h is collapsible on a variable 
V  with weights wv if 

∑
v
{{h[f (Y a=0,Y a=1|V=v)]×wv}∑

v
wv

=

h[f (Y a=0,Y a=1)].

As we will show in the next section, under Definition 
2 it is possible to provide results that guarantee col-
lapsibility of certain effect measures for any data set. 
Collapsibility can then be understood as a mathemati-
cal property of the effect measure, rather than a conse-
quence of certain graphical or probabilistic structures 
in the particular data set. Consequently, results from 

Greenland and Pearl do not apply under Definition 2, 
and measures of effect may be collapsible over V  even 
if V  is a confounder. Definitions 1 and 2 are not gener-
ally equivalent: a set of weights that satisfies Definition 
1 may not satisfy Definition 2, and conversely a set of 
weights that satisfies Definition 2 may not satisfy Defi-
nition 1. The definitions are however equivalent if there 
is neither confounding unconditionally, nor confound-
ing conditional on V  (i.e. if Y a⊥⊥A and Y a⊥⊥A|V  for all 
values of a, respectively).

Finally, we consider a third related concept, discussed 
by Miettinen [7], who stated (correctly, but without 
proof) that the “standardized risk ratio” (SRR), which 
is constructed by standardizing the risk in the exposed 
and the risk in the unexposed separately with weights 
Pr(V = v ) and reporting the ratio of these measures 
(Formula 4 in Miettinen), is equal to a weighted aver-
age of the stratum-specific risk ratios under the weights 
Pr(V = v)× Pr(Y = 1|A = 0,V = v). (Formula 6 in 
Miettinen). Since Miettinen’s SRR is equal to the causal 
risk ratio if there is no unmeasured confounding, Miet-
tinen’s weights satisfy Definition 2 in the special case of 
no confounding conditional on V.

Collapsibility of measures of causal effect
Risk difference
The causal risk difference is collapsible over  
covariates V with respect to weights wv if ∑

v
{[Pr(Y a=1=1|V=v)−Pr(Y a=0=1|V=v)]×wv}∑

v
wv

= Pr(Y a=1 = 1)−

Pr(Y a=0 = 1) . We next proceed to show that the causal 
risk difference is collapsible over arbitrary covariates V if 
we use the weights wv = Pr(V = v).

First note that the sum of the weights is 1, allowing the 
denominator to be ignored. Next,

Also note that in the absence of effect modification (i.e. 
if the risk difference is the same in every stratum) the 
stratum-specific risk differences will also be equal to the 
marginal risk difference, and the risk difference is collaps-
ible with any weights. It can be shown that this is true for 
any measure of effect for which there exist weights that 
guarantee collapsibility over arbitrary covariates.

(1)

∑

v

[Pr(Y a=1 = 1|V = v)− Pr(Y a=0 = 1|V = v)]

× Pr(V = v)

=
∑

v

Pr(Y a=1 = 1|V = v)× Pr(V = v)

−
∑

v

Pr(Y a=0 = 1|V = v)× Pr(V = v)

= Pr(Y a=1 = 1)− Pr(Y a=0 = 1)
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Risk ratio
The risk ratio is asymmetric with respect to coding of 
the outcome, so it is necessary to consider each risk ratio 
model separately. These are defined as follows:

The two risk ratio models require different sets of 
weights for collapsibility. We next show that the causal 
risk ratio RR(−) is collapsible over arbitrary covariates 
V if we use the weights wv = Pr(V = v|Y a=0 = 1) , i.e. 
weights determined by the distribution of the baseline 
covariates among those individuals who would have been 
cases if they, possibly contrary to fact, were not treated 
with drug A:

Our goal is to show that

Again, we note that the sum of the weights is 1, and 
that the denominator can therefore be ignored.

This proof is not invariant to the coding of the expo-
sure or outcome variables, and the correct weights 
will therefore depend on the exact specification of the 
risk ratio parameter. Analogous proofs can be pro-
vided to show that the weights for RR(+) are given by 
Pr(V = v|Y a=0 = 0) , the weights for 1

RR(−)
 are given by 

Pr(V = v|Y a=1 = 1) , and that the weights for 1
RR(+)

 are 
given by Pr(V = v|Y a=1 = 0),

Note that the marginal causal risk ratio is generally not 
equal to a weighted average of the conditional causal risk 

RR(−) =
Pr(Y a=1 = 1)

Pr(Y a=0 = 1)

RR(+) =
Pr(Y a=1 = 0)

Pr(Y a=0 = 0)

RR(−) =
Pr(Y a=1 = 1)

Pr(Y a=0 = 1)

=

∑
v
[
Pr(Y a=1=1|V=v)

Pr(Y a=0=1|V=v)
× Pr(V = v|(Y a=0 = 1)]

∑
v
Pr(V = v|Y a=0 = 1)

(2)

∑

v

Pr(Y a=1 = 1|V = v)× Pr(V = v|Y a=0 = 1)

Pr(Y a=0 = 1|V = v)

=
∑

v

Pr(Y a=1 = 1|V = v)× Pr(Y a=0 = 1|V = v)× Pr(V = v)

Pr(Y a=0 = 1|V = v)× Pr(Y a=0 = 1)
(Bayes Theorem)

=
∑

v

Pr(Y a=1 = 1|V = v)× Pr(V = v)

Pr(Y a=0 = 1)

=

∑
v Pr(Y

a=1 = 1|V = v)× Pr(V = v)

Pr(Y a=0 = 1)

=
Pr(Y a=1 = 1)

Pr(Y a=0 = 1)

ratios, if the weights are determined by the marginal dis-
tribution of the covariates V. Exceptions occur in special 
situations, such as when the risk ratio is equal in every 
stratum (i.e. when there is no effect modification on the 
risk ratio scale).

Odds ratio
For all the previously discussed parameters, we have 
shown that for any baseline covariates V, there exist 
weights such that the marginal effect measure is equal 
to a weighted average of the stratum-specific effects. We 
will now show that this does not hold for the odds ratio 
by considering the following simple counterexample:

Consider a population, with 25% men and 75% women, 
where a randomized trial is conducted on the effect of 
drug A. The hypothetical results are shown in Table  1. 
The randomization probability is equal in men and 
women and we have an infinite sample size, there is 
therefore no confounding.

This table shows that for the variable sex, the stratum-
specific causal odds ratios are equal between men and 
women, but the overall causal odds ratio is different 
from the stratum-specific odds ratios. Moreover, since 
any weighted average of the stratum-specific odds ratios 
is 3, there does not exist any set of weights that makes 
the odds ratio collapsible over sex. This counterexample 
shows that no generally applicable weights such as those 

Table 1 Conditional and marginal odds ratios

Counterfactual 
risk of outcome 
(placebo)

Counterfactual 
risk of outcome 
(treatment)

Causal odds 
ratio

Men (25%) 0.5 0.75 3

Women (75%) 0.25 0.5 3

Overall 0.3125 0.5625 2.83
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for the risk difference and the risk ratio can be provided 
for the odds ratio.

Identification of the weights
If the investigator intends to report an average of the 
stratum-specific effects as an estimate of the marginal 
effect, it is necessary to know not only that the effect is 
collapsible in principle, but also to construct appropriate 
weights, identify them from the data and apply them in 
the analysis. The weights for the causal risk ratio RR(−) , 
Pr(V = v|Y a=0 = 1) , have a counterfactual variable in 
the conditioning event, and may not be identified from 
the data. However, we proceed to show that the weights 
are identified in the absence of unmeasured confounding, 
i.e if Y a=0⊥⊥A|V

Proof

(3)

Pr(V = v|Y a=0 = 1)

=
Pr(Y a=0 = 1|V = v)× Pr(V = v)

Pr(Y a=0 = 1)
Bayes Theorem

=
Pr(Y a=0 = 1|A = 0,V = v)× Pr(V = v)

Pr(Y a=0 = 1)
Partial exchangeability

=
Pr(Y = 1|A = 0,V = v)× Pr(V = v)

Pr(Y a=0 = 1)
Consistency

�

Table 2 Standardization of the risk ratio

Table shows a simple toy example of 2000 subjects, of whom 1000 are 
exposed to a drug. Here, the covariate V denotes gender, and we assume no 
unmeasured confounders. The marginal causal risk ratio can be calculated as 
0.25×0.4+0.6667×0.3

0.4+0.3
= 0.428 . Note that the weights are easy to obtain: Pr(V = v) is 

just the probability of belonging to the gender, and P(Y = 1|A = 0, V = v) is the 
probability of the outcome among the unexposed in that gender

Men Women

Exposed cases (n) 100 200

Exposed non-cases (n) 400 300

Unexposed cases (n) 400 300

Unexposed non-cases (n) 100 200

Risk Ratio 0.25 0.6667

Pr(V = v) 0.5 0.5

P(Y = 1|A = 0, V = v) 0.8 0.6

Weight 0.4 0.3

Pr(Y a=0 = 1) is constant over v and can therefore be 
factored out of the weights. In the absence of  unmeas-
ured confounders, the weights Pr(V = v|Y a=0 = 1) 
are therefore equivalent to Miettinen’s weights 
Pr(V = v)× Pr(Y = 1|A = 0,V = v) as discussed earlier. 
These weights can be used both to control for confound-
ing due to V, as suggested in a simple example in Table 2, 
or to standardize the results to a new target population 
(by taking the risk ratio from the study population, and 
information on Pr(V = v) and P(Y = 1|A = 0,V = v) 
from the target population).

An alternative identification of the weights can be 
used if standardizing experimental results to a popu-
lation in which everyone is unexposed. In such situa-
tions, Y a=0 = Y  in all individuals by consistency, and 
the weights in the target population are identified as 
Pr(V = v|Y = 1).

Discussion
We have reviewed well-established results on the col-
lapsibility of measures of association, and shown corre-
sponding results for measures of causal effect. With these 
causal effect measures, one can disentangle the compo-
nents of non-collapsibility that are due to the mathemati-
cal properties of the effect measure from the components 
that are due to structural bias and the probabilistic 

structure of the dataset. We have provided new, simple 
weights for the causal risk ratio, which guarantee collaps-
ibility over arbitrary baseline covariates, and we showed 
that such weights do not exist for the causal odds ratio.

Our weights for the causal risk ratio RR(−) are equiva-
lent to the weights previously discussed by Miettinen 
when there is no unmeasured confounding; in other 
words, in all situations where standardizing over V pro-
vides a valid estimate of the causal effect. Our formula-
tion allows a simpler presentation of the weights and of 
the proofs. Furthermore, our formulation highlights pit-
falls of using weighted averages: When conditioning on 
V, the correct weights cannot be estimated from the data 
if unmeasured confounding is present. In such scenarios, 
using erroneous weights can possibly amplify the bias 
that is caused by unmeasured confounding within the 
strata.

Finally, we note that in many cases we do not need to 
use results on collapsibility al all, because we can stand-
ardize the distributions of Y a=1 and Y a=0 separately. One 
way to do this is by reporting the overall marginal risk 
ratio RR(−) as

∑
v Pr(Y

a=1 = 1|V = v)× Pr(V = v)∑
v Pr(Y

a=0 = 1|V = v)× Pr(V = v)
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Since this simple procedure does not depend on collapsi-
bility, analogous procedures are valid for any effect meas-
ure, including the odds ratio.
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